321 resultados para Insulating materials

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method was developed for the estimation of the erosive wear of fiber-insulating materials. The wear increases with increasing impact velocity of the particles, increasing impact angle, particle size and the thermal ageing of the fibre elements. Through CFD simulation of the particle-containing gas flow, the erosion depth can be predicted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In microelectronics, the increase in complexity and the reduction of devices dimensions make essential the development of new characterization tools and methodologies. Indeed advanced characterization methods with very high spatial resolution are needed to analyze the redistribution at the nanoscale in devices and interconnections. The atom probe tomography has become an essential analysis to study materials at the nanometer scale. This instrument is the only analytical microscope capable to produce 3D maps of the distribution of the chemical species with an atomic resolution inside a material. This technique has benefit from several instrumental improvements during last years. In particular, the use of laser for the analysis of semiconductors and insulating materials offers new perspectives for characterization. The capability of APT to map out elements at the atomic scale with high sensitivity in devices meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region. In this paper, several examples will show how APT can be used to characterize and understand materials and process for advanced metallization. The possibilities and performances of APT (chemical analysis of all the elements, atomic resolution, planes determination, crystallographic information...) will be described as well as some of its limitations (sample preparation, complex evaporation, detection limit, ...). The examples illustrate different aspect of metallization: dopant profiling and clustering, metallic impurities segregation on dislocation, silicide formation and alloying, high K/metal gate optimization, SiGe quantum dots, as well as analysis of transistors and nanowires. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the deposition and characterisation of semi-insulating oxygen-doped silicon films for the development of high voltage polycrystalline silicon (poly-Si) circuitry on glass. The performance of a novel poly-Si High Voltage Thin Film Transistor (HVTFT) structure, incorporating a layer of semi-insulating material, has been investigated using a two dimensional device simulator. The semi-insulating layer increases the operating voltage of the HVTFT structure by linearising the potential distribution in the device offset region. A glass compatible semi-insulating layer, suitable for HVTFT applications, has been deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The as-deposited films are furnace annealed at 600°C which is the maximum process temperature. By varying the N2O/SiH4 ratio the conductivity of the annealed films can be accurately controlled up to a maximum of around 10-7 Ω-1cm-1. Helium dilution of the reactant gases improves both film uniformity and reproducibility. Raman analysis shows the as-deposited and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-Doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid and effective thermal processing methods using electron beams are described in this paper. Heating times ranging from a fraction of a second to several seconds and temperatures up to 1400°C are attainable. Applications such as the annealing of ion implanted material, both without significant dopant diffusion and with highly controlled diffusion of impurities, are described. The technique has been used successfully to activate source/drain regions for fine geometry NMOS transistors. It is shown that electron beams can produce localised heating of semiconductor substrates and a resolution of approximately 1 μm has been achieved. Electron beam heating has been applied to improving the crystalline quality of silicon-on sapphire used in CMOS device fabrication. Silicon layers with defect levels approaching bulk material have been obtained. Finally, the combination of isothermal and selective annealing is shown to have application in recrystallisation of polysilicon films on an insulating layer. The approach provides the opportunity of producing a silicon-on-insulator substrate with improved crystalline quality compared to silicon-on-sapphire at a potentially lower cost. It is suggested that rapid heating methods are expected to provide a real alternative to conventional furnace processing of semiconductor devices in the development of fabrication technology. © 1984 Benn electronics Publications Ltd, Luton.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropic nature of fibre reinforced composites leads to large stress concentrations around pin-loaded holes through standard weave cloths. Proper understanding of how this anisotropic nature affects the load distribution around holes can be utilised to reduce these con-centrations if sufficient thought is given to the internal fibre geometry near to the hole. Such local reinforcements need not be highly complex and can be readily produced without excessive effort, producing significant improvements in performance. © 1996 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.